COEFFICIENTS OF ISOTHERMAL MASS TRANSFER
IN A POROUS BODY COMPOSED OF SPHERICAL PARTICLES

N. V. Churaev UDC 532.685

The mass transfer coefficients are calculated for a model porous body composed of identical
spherical particles, The results apply to low fluid levels in the threshold space,

The gist of the calculation is to determine the relation P(U), which characterizes the state of a fluid
in a system composed of spherical particles, and then to determine the mass transfer coefficients for this
model body. The first part of the problem is solved rather easily, because corresponding expressions
have already been derived for a bulk of capillary liquid condensing at contact surfaces between particles
[1-7]. A comparison shows that, within the volume of liquid held by capillary action [4, 6], the rigorous
solutions [2, 4, 5] do not differ much from the approximate solutions [1, 3, 6] where a complex meniscus
profile has been replaced by a circular arc. We will, therefore, use the appropriate solution in [1] for
the volume of liquid at a single contact surface v under a capillary pressure with complete wetting:
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We will consider a porous body composed of particles having all the same diameter d (Fig. 1). The
number of contacts between each particle and adjacent ones (coordination number N) depends on their pack-
ing pattern. For a regular packing this number varies from N = 4 to N = 12, which corresponds to a varia-
tion in the system porosity from n= 0.66 to n= 0.26 [8]. For a random packing the value N is a statistical
one, corresponding to an average number of contacts per particle. A volume element of the porous medium
is contained within the dashed contour line in Fig. 1. Assuming that all contacts are solid, one can express
the porosity in terms of the coordination number approximately as follows:
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The liquid content in the system corresponding to a specific magnitude of the contact angle ¢ and,

consequently, to a specific capillary pressure level P is
U= 6uNp . 6hpC
dp, 14 (N/2)] Pod

Here the first term represents the quantity of capillary condensate and the second term represents the
quantity of film moisture, Coefficient C = 1—N(1—cos@)/2 accounts for the incomplete coverage of a
particle surface with film, namely at areas free of capillary moisture only. Justas in [7], the film thick-
ness h will be calculated here with the aid of the breakdown-pressure isotherm for a plane film [9]:

h = (A . (4)

(2)

Considering now only the case of large particles, we may disregard the effect of their surface curva-
ture on the liquid film thickness and the pressure in it. During equilibrium I = —P.
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Fig. 1. Section through a model
porous body composed of spheri-
cal particles with the same di-
ameter d.

These expressions yield the specific mass capacity of a system ¢y = 8U /9P, In order to calculate
the latter, we find the derivatives 8U/ 8¢ and 0P/ 0 ¢ from Egs. (3) and (2) respectively, their ratio then
being equal to e¢m:
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In Fig. 2a, b are shown P(U) and ¢y (U) curves calculated for various particle sizes,

Henceforth we will consider a quartz—water system at T = 293°K with p, = 2.7 g/cm?, A = 510712
erg [10], n= 0.5, and N = 6, The choice of N = 6 is based on its closeness to the average coordination
number of actual contacts for random packed spherical particles [11].

It is evident, according to Fig. 2a, b, that these theoretical P(U) and ¢y, (U) relations approach the
respective relationg established experimentally for several porous media [12-15]. Sirotkin has recently
found a similarly close agreement between the P(U) relations calculated according to Egs. (1), (2) and the
test data for quartz powders of various dispersivities [7].

It must be noted, however, that calculations according to Egs. (1), (2) can be made only for moisture
contents below a certain critical level Uyp, which corresponds to a merger of adjacent capillary interstices
and a filling of voids between particles with liquid, As is well known [9], this moisture content corresponds
to the critical level of potential Pop. When N = 6, the condition U < Ugr corresponds to angles ¢ < 45°.
For a quartz—water system Ugr ~ 0.081 g/g. Thus our calculations apply to low moisture contents in the
porous space,

According to Fig. 2a, the capillary pressure rises as U drops and, at equal moisture contents, the
absolute pressure P is higher in systems with smaller size particles. The presence of film moisture
causes pressure P in the porous body to rise sharply as the specific surfice enlarges. This canalso be
recognized on the graph of relation ¢y, (U) = dU/dP. The specific mass capacity becomes lower with
smaller particle diameters, As in real porous bodies, cm becomes lower at lower moisture contents.

The second part of the problem, namely determining the mass transfer coefficient K for the same
model, is more difficult to solve. It requires that the mass transfer rate be calculated with the simuitane-
ously occurring vapor diffusion and liquid film flow along the particle surfaces taken into account. The
total moisture current can be expressed as

oD Ly — ofh® -5
_ __ PDoy, v — vP = — KyP, 6
RT. P 3n \V (6)

with ng = n—pyU(1 —n)(1/ p) denoting the porosity which corresponds to the volume of air-filled pores and f
denoting the section area covered with liquid film as a fraction of the total specimen section:

6k 6h N
e — C = 1= 2 —
f [1 2 (1 coscp)] (7
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Fig. 2. Capillary pressure P (a), specific mass capacity ey
(b), and liquid diffusivity a;, (c) as functions of the moisture
content U in the model system:d = 0,1 em (1), 0.01 cm (2),
0,001 cm (3), 0.0001 cm (4).

Assuming that the vapor and the liquid in the porous body are in thermodynamic equilibrium, i.e.,
that P = (RT/vy,) In(p/ps), we find expressions relating the mean gradients of vapor and liquid pressure:

o — psvm‘?ﬁ PUm ) .
VP ="7%T e"p( RT

We will consider here that the local gradients of liquid pressure (analogous to the local temperature
gradients in [16]) may be higher than the mean gradients, because the hydraulic drag is much higher in the
film regions than in the capillary interstices. This is valid, to the first approximation,* . inasmuch as the
ratio of mean to local gradient is equal to the ratio of the shortest distance between capillary interstices !
at a particle surface (Fig. 1) to the distance between adjacent particle contact points. Then, for N=6

VPIyP = /(1 — (4¢/x)]. (9

(8)

With this correction, we have
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This expression follows from (6) after £, h, Vo, and VP have been replaced by their respective values
from (7), (4), (8), and (9).

Since to every value of ¢ correspond values of P and U, according to Egs. (2) and (3) respectively,
hence from (10) one can easily calculate K as a function of the moisture content U in the system. It appears
also feasible, using expression (5) for the specific mass capacity, to obtain an expression for the diffusivity
of liquid as well:

@ = KlerVo= Klcui(1 —1). (11)

The diffusivity ey, as a function of the moisture content and of the particle diameter is shown in Fig.
2¢ for the model quartz—water system. As in real porous bodies [17-19], the function a,,(U)has two ex-
trema: a minimum at some value U; and a maximum at U= U, < Uj. At U > U; both K and ep, increase
fast. This is due to the rising liquid level in the interstices after a merger of capillary channels, which
rapidly increases the mobility of liquid in the system. Thus, the minimum value of a;, should corre-
spond to the critical moisture potential Per, at which the capillary moisture becomes interspersed with
film moisture [9]. As has been mentioned earlier, Ugy ~ 0.03 g/g, which agrees closely with the values
for U; in Fig, 2c.

We note that in a random packing of particles (unlike in a regular packing) the pores will fill with
liquid not under a very definite pressure Pgp but within a range of pressures P. First the narrowest pores
(regions of closest packing), where the transition occurs earlier, will fill up and then the wider pores.

Tor this reason, the mass conductivity K of real materials increases monotonically as the porous space
is filled with liquid, until it reaches its maximum value equal to the filtration coefficient. In order to

*We also do not consider here the deviation from a linear drop in vapor pressure. In order to take this
effect into account, it would be necessary to solve the two-dimensional problem of vapor diffusion.
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extend the calculation of ¢y, and ay, to this range of moisture contents, it becomes necessary (as in [12, 13])
to introduce the size distribution function of porous volumes,

The peaking of the g, (U) curve within the range of low moisture contents has been noted in many ex-
perimental studies [13, 17, 18, 20-22]. According to calculations, the physical cause of this trend is the
weaker vapor diffusion current at lower moisture contents. This, in turn, is due to the reduced partial
vapor pressure following a strengthened bond between the liquid and the solid phase, We will illustrate
this on the am (U) relation for small values of U, with no meniscal vapor present and with a negligible effect
of film transport.* In that case only the second term is retained in Eq. (2), which yields for a (4)-type

isotherm:
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The exponential factor in (14) characterizes the decrease in partial vapor pressure above the ad-
sorbed moisture. As the moisture content decreases, am first increases with 1/U* and then begins to de-
crease because of the faster decreasing exponential factor.

The moisture content U, corresponding to the maximum diffusivity will be found from the condition
that day /dU = 0:

3p 3v,,A \18
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As the size of particles decreases, according to (15), the value of U, should shift toward higher
moisture contents (Fig. 2c¢). Inserting the value of U, from (15) into (12), we obtain Py = -4/ (RT/vpm)
and this yields p,/pg = 0.263 for water. At such a water pressure, which corresponds to a § ~ 1.3 fill
in a monolayer of water molecules on the quartz surface [23], the diffusivity becomes maximum beyond
the range where it depends on the particle size.

These calculations are approximate (especially within the U — 0 range) however, inasmuch as the
adsorption of water on the surface of quartz particles cannot be described by a single isotherm (4). The
applicability of this isotherm is limited to the range of relatively thick films. At some pressure level Il
or px the wetting film becomes instantly thinner and this indicates a transition to a different kind of adsorp-
tion isotherm [9, 24]. For water on quartz, therefore, one can use an isotherm of polymolecular adsorp-
tion according to Deryagin and Zorin [25, 26] within the pressure range py/pg > 0.95 but isotherms of mono-
molecular adsorption [23, 27] within the range of lower pressures. Preliminary estimates indicate that,
as U — 0, any remains constant in the case of a linear Henry isotherm, but increases in the case of a bend-
ing isotherm (e.g., a Langmuir isotherm). Only in the case of a bending Kiselev isotherm [27] accounting
for the adsorbate —adsorbent interaction does ay decrease when U — 0, as usually noted in practice. The
trend of the am (U) relation within the range of very low moisture contents is determined by the specific
shape of the adsorption isotherms,

The proposed method yields analytical expressions for the coefficients of isothermal mass transfer
in systems composed of identical spherical particles. It may be extended also to polydisperse systems,

Analogous calculations were made earlier by Lykov for a simpler model of a porous body: noninter-
secting cylindrical capillaries of diverse radii [12, 13]. Those calculations were most successfully applied
to the range of high liquid levels in the threshold space, Our solutions yield analytical expressions for the
transfer coefficients for disperse (granular) bodies with moderate moisture contents. They make it pos-
sible to theoretically analyze the structural characteristics of a system (size of particles, mode of packing)
as well ag the nature of interaction between the liquid and the solid phase, This again makes it feasible,
in principle, to predict the optimum structural characteristics and mass transfer modes in various tech~
nological processes.

* An almost stationary adsorption film remains on the particle surfaces.
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NOTATION

is the capillary pressure, dyn/cm?;

is the moisture content, g/g solid phase;

is the volume of contact interstice, cm?;

is the diameter of particle, cm;

is the diameter of an elementary volume in the porous body;
is the surface tension of liquid, dyn/cm;

is the angle between a line connecting the centers of two particles anda radius pointing toward the
capillary contact between capillary moisture and surface film;
is the density of liquid, g/cm?;

is the density of solid phase, g/cm?;

is the film thickness, cm;

is the film breakdown pressure, dyn/cm?;

is the constant in the breakdown-pressure isotherm, erg;

is the moisture current, g/cm? - sec;

is the vapor diffusivity, cm?/sec;

is the vapour pressure, dyn/cm?;

is the gas constant, erg/mole-°K;

is the absolute temperature;

is the kinematic viscosity of liquid, dyn-sec/cm?;

is the mass conductivity, sec;

is the molar volume of liquid, e¢m?®/mole;

is the saturated-vapor pressure, dyn/cm?;

is the specific mass capacity, cm?/dyn;

is the liquid diffusivity, cm?/sec;

is the mean gradient of liquid pressure, dyn/cm?;

is the local gradient of liquid pressure, dyn/cm?;

is the mass of solid phase per unit volume, g/cm?,
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